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The internal structure of equilibrium configurations of stellar masses possessing a density of the or-
der of the density of the atomic nucleus and higher was studied. It is shown that the space metric
inside the configurations deviates markedly from the Euclidean metric. In addition, the total num-
ber of baryons in the configurations discussed in our previous contribution [1] was calculated. For
large values (of the total number of baryons), there are two solutions with different total energies.
Of these, the configurations considered to be wholly stable are those associated with a larger

mass defect.

1. Structure of Configurations Consist- Figure 2 shows curves of U(r) for six different ideal
ing of an Ideal Baryonic Gas gas states. These configurations differ in values of t(0)
In our previous contribution (1], where we consider- plotted on each curve.
ed several equations of state, we derived values of some The curve plotted for ty(0) = 1 does not terminate
of the important parameters specifying superdense con- within the confines of the graph. It actually extends out
figurations consisting of a degenerate baryonic gas. In tor=21.1 km.
performing numerical calculations, we obtained all the We are in a position to also calculate the compo-
necessary parameters specifying the internal structure nents of the metric tensor g (r) and go(r) on the basis
of the configurations as a matter of course. Below, we of the results obtained.
consider in somewhat greater detail the structure of the For g(r) in the interior of the star, we have [2]:
configurations calculated under the assumption of a
ideal Fermi gas. L g 2u(n) (1.1)
Figure 1 shows curves characterizing the variation &rr (1) r’
of the parameter t(r) inside the star for four configura- and in the space outside the star:
tions corresponding to different values of t;(0). As we 1 oM
readily see in recalling the previous article [1], the o i > R, (1.2)
density is found as a function of ty(r), so that these curves
offer a graphic picture of the density distribution of the ar e
intrastellar matter. 2 24
1,0 as £ ] =
= y a v ,/ i
’ A : . A | =
5 | ! az 5 % / //|, !
; - o A G
A Vi —
z§§\\ 0 7 3 & 6§ 6 7 46 4§ W nt,km
/ ™~ E\:; Fig. 2. Graph of function U(r). Distances are
\§\\\\ﬁ< measured in kilometers. The numbers on the
4 R ¢ 9 @ # Zr, km curves denote values of the parameter t.(0).
Fig. 1. Parameter ty(r) as a function of the co- The curve for t(0) = 1 extends out to r = 21,1
ordinate r. Distances are given in kilometers. km. U(r) gives an approximate idea of the
The definition of t; may be found by reference mass concentrated in a sphere of radiusr. U
to our earlier paper ([1], Eq. (1.2)]. values are in solar mass units,
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where M is the stellar mass and R is the stellar radius,
The last formula is the familiar outer Schwarzschild
solution.

The dependence of component g, of the metric
tensor on the magnitude of the radius vector for five
different configurations is plotted in Fig. 3. The numbers
attached to the curves denote the value of parameter
t(0). We see‘that the metric deviates quite decidedly
from the Enclidean metric. T heories of superdense con-
figurations resting on the Newtonian graviational theory
as a basis would therefore incur sizable errors.

The time component gggof the metric tensor outside
the configurational volume is determined by the formula

Mor>Ro A

1
8oo (1) = e () = 1—
Inside the configurational volume, however, the
value of gy may be arrived at on accepting the starting
point that the matter exists in a state of thermodynamic
and mechanical equilibrium. The equilibrium conditions
for the neutronic component are of the form [3]

V—800(r) n (1) =V — goo (R) pn (R)  (1.4)
= const, :
where § (1) is the chemical potential of the neutron gas
at a distance r from the center of the configuration,
Since we are discussing a highly degenerate state,
the chemical potential of the gas is equal to the critical
Fermi energy for the gas particles

Pn (r) = c [m2c® + p2 (r)]"-. (1.5)

Formula (1.4) is valid, strictly speaking, only for the
region containing neutrons. In practice, however,
neutrons appear at only a slight depth from the stellar
surface in all our configurations. The outer layer con-
sisting wholly of protons and electrons is quite tenous.
Neglecting this layer, then, we may write p(R) = 0 and
B oR) = mncz. With this in mind, and not overlooking
Egs. (1.3) and (1.4), we find the following from Eq. (1.4)
for gpo:

— 8o (1) = (1 — %>cosh2i"4(—r), (1.8)
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Fig. 3. Dependence of component g, of metic
tensor on r. Asr — 00, the function g;; tends to
its Euclidean value of unity, r is measured in
kilometers.

Curves ty(r) are plotted in Fig. 1. Atr =R, we have
t(r) = 0 and Eq. (1.6) goes over into Eq. (1.3).

The function gy(r) is graphed for some values in Fig.
4. The numbers attached to.the curves indicate the value
of t(0) for the configuration in question. The gy(r) is
interesting for the configuration where the density at the
center, and consequently t,(0) as well, goes to infinity.
In this case, gy(0) vanishes and the four-dimensional
interval transforms to a purely spatial interval, From the
standpoint of an external observer, the phenomena occur-
ring at the center of that configuration must proceed at
an infinitely slow rate,

Note that the metric properties of three-dimensional
space are specified by the tensor a8 = g0 —goa " 80p7
go0» Where a, B =1, 2, 3. In our case, however, (i.e., a
static field), this tensor contains only the diagonal
elements g = 0 and ¥ = gpp.

We shall not cite the corresponding data character-
izing the inner structure of the configurations consisting of
a real gas. For obvious reasons, the non-Euclidean nawre
of space in this case is more strongly pronounced in the
volume of the configurations and in the adjacent regions.

In our preceding contribution [1], the term radius
was taken to mean the value of the coordinate r at the
surface of the star. The actual stellar radius Ry is found
from the formula:

R

R, =S V gndr; (1.7)

0

and its value differs markedly from the coordinate radius

R for the configurations discussed here. Numerical values

of Ry are given in Table 1,

2. Number of Baryons in Star
The material presented in the preceding paragraphs
furnishes us with grounds for asserting that all the para-
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Fig. 4. Dependence of time component gy, (r) of
metric tensor. gy = 1 corresponds to Euclidean
space.
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TABLE 1. Dependence of Number of Baryons, Radius, and Packing Fractions oy and oy

on the Parameter t;(0)

Ideal gas Real gas

3 g3l radius, km 3 &,| radius, km \
in (0) ..E %:’: m 102.a, | 1025 | n 0) -g % W 0%, | 10%-a,

S |star C)OI?e 5.3 &l F4%s ron|
0.556 1.70 | — — 4.9] 0.558] 2.1 9.33 [13.0 — 9.3 7.32
1.0 4.03 — —_ 10.0| 1.80 | 2.2 9.75 {12.7 2.91 7.4] 10.0
1.3 5.34 |18.7 — 8.7 2.68 | 2.4 11.0 |[11.2 4.9 7.1| 14.5
1.5 6.07 |16.3 — 9.013.92 | 2.6 13.1 9.53| 5.81 7.7] 28.5
1.8 7.23 |15.2 — 8.5 5.52 | 3.0 12.7 6.90| 5.66 3.91 39.9
2.4 8.00 |11.8 3.37 5.8/ 8.76 | 3.1 11.5 6.97| 5.68 2.3]45.0
2.75 7.30 |11.1 3.74 6.0] 9.87 | 3.2 9.8 6.81] 5.33 |—2.7] 47.2
3.0 6.56 [10.4 3.49 6.0(10.4 3.3 8.22 | 6.69| 5.34 [—12 | 48.8
3.3 5.52 9.98| 3.28 3.2110.9 3.4 635 | 6.56] 5.00 |—22 | 54.6
4.0 4.01 | 9.12) 2.79 2.412.9 3.8 6.72 | 6.98] 5.09 | —18 | 55.6
5.0 2.48 7.48| 2.13 |—9.1[15.9 4.0 6.83 | 7.15| 5.29 |—16 | 55.2
6.0 1.96 8.24 1.83 |—7.3/19.8 5.0 7.00 | 7.11] 5.32 |—16 | 54.5
7.0 2.46 |11.1 1.67 |—6.3(15.4 7.0 7.00 7.21| 5.32 |—16 | 54.5
00 3.70 |11.1 2.31 |—3.8110.9 0o 7.03 | 7.19| 5.30 |—16 | 54.8

meters specifying stable superdense configurations con-
stitute a single-valued function of the central density of
matter, represented by the parameter ty(0). On the other
hand, we see that the converse assertion is not always
correct, And indeed, in some range of values of one or
the other observable parameter (e.g., mass or radius),
two or even three widely divergent values of density of
matter at the center may correspond to one single value
of that parameter (cf, Figs. 1 and 2 in our preceding con-
tribution [1]).

The study of the relationship between stellar para-
meters and the number of baryons in the star, and the
dependence of that number on the density value at the
center are problemsof heightened interest. The number
of baryons in a star, denoted n in what follows, is derived
from the formula

R
n= 4:5& V g N (r)r2dr, (2.1)

0
where N(r) = ?(Nk(r) is the total baryon density at a dis-

tance 1 from the center.

The integral (2.1) was computed for various configu-
rations of ideal and real gases, To achieve this, we had
to first plot curves of N(r), Theresults of the calculations
appear in the second and eighth columns of Table 1,

We must dwell for a moment on the configurations
with infinitely large density at the center, In this case
we can derive an asymptotic expression for the number
of baryons enclosed within a central sphere of rather
small radius r.

In order to arrive at an asymptotic formula for n(r),
note that att;, >> 1, we have sinh t, ~ 9 cosh? (1, /4).
Moreover, from the conditions for equilibrium states (cf.
Egs. (1.4) and (1.5) from [1]), we find that

my, cosh (4,/4) ~m_ cosh (1,/4) (2.2)

(in the case of central particles the equation will be an
identity). Bearing in mind Eq. (2.2) for baryon density,
we find

32 Ky 1 g g3
N =5 Dy as(Gsinng’)
k

2K,s oty
=~ Wcosh z" y

(2.3)

where § = Z ar/2 = 11.
k

In the case of an ideal gas, we have for the density
of matter

4
p=K, ;} > ('%’;) (sinhty — ty)

+ m2N,, ~ 8sK,, cosh?(¢n/4). (2.4)
Comparison of Egs. (2.3) and (2.4) yields
K I[/‘
N (n~ 32_ (Kn) p(r). (2.5)

3.8% m,c?
Hence, taking into account the asymptotic solution (4.4)
derived in [1]:
N (r)=~or—, (2.6)
where
K:{‘ ct */a
6= 3.86 _';L_n?i (—m> .

For regions of space where the asymptotic solution
is applicable, g;; has the constant value g, ~ 7/4.
Substitution of Eq. (2.6) into (2.1) yields

r

n(r) = 4n g Ve, N (r)r2dr ~7.83.10%%, (2.7
0
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It was shown in our previous contribution [1] that the
asymptotic solution is an excellent one out to distances
slightly in excess of r ~ 10 cm. This value or r yields
usn = 2.28°10°° baryons from Eq. (2.7). The number of
baryons present in the remainder of the star was obtained
subsequently by numerical integration., As a result, the
number of varyons was found to be 3.7 16°® for the con-
figuration t(0) = e,

Let us now proceed to a derivation of an asymptotic
expression for n(r) in the case of a real gas. In this case,
as t, —> @

) 4
p= Kn,zéak (ﬁli) (sinh 1y —tk)
3 "M
+mc*N, + NU (N)= NU (N).

For the model of a real gas considered here (cf. Eq.
(5.1) in [1]), we find

p~3.2.10783 V3, (2.8)

Adopting the asymptotic solution (5.6) derived in
[1], we find:

N ()= 196107 (2 0 (29

Within the domain of applicability of the asympto-
tic solution, g, = 17/9. From Eq. (2.1), and taking Eq.
(2.9) into account, we obtain

n(r)y=~1.42-10%r", (2.10)

We saw that the asymptotic solution was a good one
out to distances r = 300 cm. From Eq. (2.10), we find
n{r) = 6.94+10% for the number of baryons within the
sphere indicated. Starting at distance r = 274 cm, the
number of varyons for configuration tp(0) = < was com-
puted by means of numerical integration. This yields
the result n = 7+10° particles.

Curves of mass of calculated configurations vs. total
number of baryons present are plotted in Fig. 5. The
solid curve refers to the case where the equation for
a "real” Fermi gas comes into play. The dashed curve
represents the case of an ideal Fermi gas, Values of the
parameter t(0) at the center of the configuration in
question are plotted at several points of the curve for
clarification. At ty(0) < 1.8 the curves coincide. Only
one solid-line curve need be drawn for this region, repre-
senting both the case of a real and that of an ideal gas.
It is clear from inspection of the graph that M(n) is
sirle-valued for a real gas over the range n < 6.5- 10%,
_s double-valued in the range 7.1-10° < n < 13.5-10°
and triple-valued in the intermediate region 6.5° 10°8
<n< 7.1-10°%, In the case of ideal-gas models, the
function M(n) is single-valued atn < 2° 1056, double-
valued at 3-10°® < n < 8,1+10%, and triple-valued in
the intermediate range 2+-10° < n < 3+ 10%,

Models of an ideal gas corresponding to points on
the lower branch of the graph are purely neuwronic

AND G. S, SAAKYAN

models, Points on the upper branch correspond to hyper-
on configurations, In the case of a real gas, hyperon con-
figurations are found on both branches, but states cor-
responding to upper-branch points contain a still higher
percentage of hyperons.

This fact that, starting from some value of n (equal
to 6.5°10° in the case of a real gas) there correspond to
each n two or three equilibrium configurations, is a very
important fact, It is obvious that of the two (or three)
equilibrium configurations corresponding to a specified
1, that configuration of lesser mass will be the more
stable. Inspection of the accompanying graph shows
that a configuration of large mass exhibits a high den-
sity at the center, It would seem that the high density
at the center must signify a large gravitational mass
defect, in consequence of which the total mass of the
configuration must be smaller in this case. However, a
high configurational mass is actually arrived at, because
the percentage of hyperons having large intrinsic masses
is considerable,

It is evident that a star located on the upper branch
of the curve must undergo a transition to a state belong-
ing to the lower branch, in response to certain pertur-
bations. This transition must be accompanied by the
release of a remendous amount of energy from the star,
an amount of the order of 10% of the star's intrinsic
energy (M cz).

Two questions arise at this point: 1) How large and
of what nature must be the perturbation of the state
responsible for the star's passing from the upper equili-
brium state to the lower. Would an infinitely small per-
turbation be adequate to produce the result? 2) How
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Fig. 5. Dependence of mass of configurations
on total number of baryons, Numbers next to
circles indicate values of parameter tp at the
center of the configurations for those points.
Solid-line curve refers to real-gas models and
dashed-line curve refers to ideal-gas models,
The range 0.6 < t;(0) < 1.8 is traced out in
common by both curves.
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rapidly the transition will go to completion in the pres-
ence of an adequate perturbation.

Both these questions merit special scrutiny. If an
infinitely small perturbation is inadequate and the transi-
tion requires some finite change in a finite volume, this
will mean that the upper states are metastable and may
persist for a more or less protracted time interval. It
seems quite probable, on the other hand, that the transi-
tion process, once initiated, could hardly be contained
by any forces. The most likely variant is therefore that
the transition is of explosive character. The possibility
that the transition discussed is a transition with features
of an explosive nature from some metastable state to a
perfectly stable state accompanied by the release of an
enormous amount of energy seems therefore not at all
excluded, in the authors' view.

3. Gravitational Mass Defect

with the number of baryons in the star known, we are
in a position to calculate the gravitational mass defect,
i.e., the quantity

AM =n-myg— M, (3.1)

where my; is the mass of the hydrogen atom, M is the
mass of the star, and n is the number of baryons present.
We here introduce the notation

A _ g, (3.2)
n~mH

and term this quantity the packing fraction. Results of
computations for configurations of an ideal and of a real
gas are entered in the fifth and eleventh columns of
Table 1.

In contrast to the M mass values, the computed oy
values do not vary at all smoothly enough. The reason
for this resides in the errors which inevitably plague
calculations of Eq. (3.1). For certain reasons (we incur
errors in computing both M and n) the relative error
comes out quite large in this case.

A survey of @ values listed in Table 1 dem-
onstrates that the configuration associated with tp(0)
< 2.4 is absolutely stable in the case of an ideal
gas, while the configuration associated with tp(0) £ 2.9
is absolutely stable in the case of a real gas, The re-
maining configurations are either metastable or unstable.
There is one intriguing feature in the unstable branches,
namely that for t( 0)2 4.2 in the case of an ideal gas
and for t.(0) 2 3.15 in the case of a real gas, the binding
energy AM; has a negative value. This is related to the
fact that the mass intrinsic to hyperons exceeds the mass
of nucleons, while at the same time the gas will consist
entirely of nucleons (protons and electrons, to be exact)
when it is scattered. It is not excluded that configura-
tions having a negative AM; value may exist in nature,
but such states will be less stable than the others, In
response to external disturbances, such configurations
would eventually go over into a stable state correspond-

ing to the upper branch of the oy(n) curve (to which the
lower branch of the curve plotted in Fig. § corresponds).
A wemendous quantity of energy would have to be
explosively liberated in the process.

In concluding this section, let us consider another
gravitational mass defect, AM, = My —M, where

R
11/10:40_:':'8 ) 8rr -r2p(r)dl'. (3.3)

0

AM, shall be termed the macroscopic mass defect. Let
us also introduce the concept of a macroscopic packing
fraction

AM,

M = 0(2. (3.4)

oy is thus the mass defect referred to a unit mass of a
degenerate Fermi baryon gas.

Values of cp were obtained by D. Sedrakyan, a
student at the University of Erevan. The results are
listed in the sixth and twelfth columns of Table 1. As
we readily see, the mass defect AM; for the configu-
rations in question is quite large. For the densest confi-
gurations, this mass is of the same order of magnitude as
the mass of the star itself,

4, On Extremely High Densities of Matter

Above, we undertook a formal treatment of the case
of infinitely high density. However, the problem of the
state of matter in such cases where the mean distances
between particles become appreciably smaller than the
radius of the pion cloud surrounding the baryons (1.4
fermi) is still an open question,

1f the cores are identical in all the baryons or at
least in some of them, additional forces of a repulsive
nature must make themselves felt as soon as particles
execute close approaches, as was quite correctly noted
by Zel'dovich [4] in line with the Pauli principle. Tak-
ing this to be a valid assumption, the theory of a super-
dense degenerate state as presented in our first contri-
bution [5] can no longer be considered applicable for the
range N= 104 ¢cm-® (t, > 4.8).

In order to describe the state of matter at such den-
sities, it seems that we must entertain new physical
concepts. Without laying claimto even a rough tentative
solution to the problem, we should like to point out
several important possibilities.

When the density of matter increases the pion
clouds of neighboring particles deform each other. Ata
reasonably high density we can no longer speak of
separate pion clouds surrounding individual cores. The
totality of the cores is found in a continuous pion field.
If the cores of all types of baryons are identical, we must
speak in essence of a degenerate gas of cores, i.e., of a
degenerate gas consisting of heavy particles of one type
and a small quantity of m-mesons.
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There perhaps exist two or several different types
of cores, That is, let us postulate the existence of
neutral and positively charged cores, to be denoted Y°
and Y*. Let us further assume half-integral spin for each
of these variants,

In that case, electrons, p~ - and T -miesons are suit-
able candidates as stable components of matter in ad-
dition to those two core types. In a manner similar to
that followed in the preceding contribution, we may find
the state of such a gas from a corresponding variational
principle, by assigning a total number of cores and ob-
serving the neuwrality condition. As a result, we derive
the equilibrium condition:

Ey: -+ mqc® = Ey,, (4.1)
E,=E, = my-c?, (4.2)

where the subscripted E's indicate the cutoff energy of
the appropriate particles, From Eq. (4.1), we have

m cosh(t, /4)= my - cosh(2y/4) — my, (4.3)
and from Eq. (4.2) we have
_ {1.20-10%" cm™ at k=,
" {3.38-1036 cm® at k=pn. (4.4)

The concentration of 7 -mesons is found from the
neutrality conditions

Ny.=N*—N,—N,. (4.5)

Since the concentrations of electrons and j -mesons
must be much smaller than the concentration of other
remaining particles, we may state that

N~ Nt~ N°,

Returning to the assumption that there exists only one
type of core, let us take note of two possible variants
applicable in this case, If this unique core is neutral,
matter cannot exist in the form of any other kind of
elementary particle.

If on the other hand the core is of positive charge
for all baryons, then electrons, 7~ and u~-mesons are
capable of existence in addition to cores. In a state of
thermodynamical equilibrium we have

E,=E, = mac? (4.6)

Finally, the neutrality condition yields for the baryon
concentration

Ny=Nr:+Ne+NHzN"' (4.7

Further consideration of these problems would con-
front us with many confusing and puzzling aspects. We
shall therefore rest our case at this point, the more so

inasmuch as the introduction of matter consisting of
cores can obviously have no effect on the order of mag-
nitude of the mass of equilibrium configurations.

Summary

The investigation of the internal structure of super-
dense configurations consisting of highly degenerate
baryon gas demonstrates that the metric must deviate
strongly from the Euclidean metric in the interior of a
star and in the regions of space immediately surrounding
the star, We must therefore always accept Einstein's
theory of gravitation as the point of departure in cal-
culating hyperon star configurations.

The basic feature of each configuration is the num-
ber of baryons n in a star. However, it is found that two
or three equilibrium configurations with different mass
values correspond to several values of n. Of these, the
configuration associated with the least mass value willbe
the most stable. The question of a possible metastable
state of higher energy was posed. A study of the process
of transition from higher-energy to lower-energy states
was also seen to be of interest.

The authors express their acknowledgment t0 G. S.
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